抢跑报名参加安阳思而学教育 2018暑假班课程 培训 安钢梅园庄校区、开发区华强城校区今日距2019年中考还有: 00天 00时 00分 00秒
2016˼ѧ״Ԫ
六年级数学 首页小学课程数学六年级数学

小升初总复习之基本概念--3:代数初步知识

发布人:admin | 来自:本站 |  发布时间:2011-03-29 06:45:00  |  点击次数:2597

一、用字母表示数

1  用字母表示数的意义和作用 

* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。 

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

1)常见的数量关系 

路程用s表示,速度v用表示,时间用t表示,三者之间的关系: 

s=vt    

v=s/t

t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc

b=a/c

c=a/b

2)运算定律和性质 

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc) 

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c) =a-b-c

3)用字母表示几何形体的公式 

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 

c=2(a+b)

s=ab

 正方形的边长a用表示,周长用c表示,面积用s表示。 

c=4a

s=a²

平行四边形的底a用表示,高用h表示,面积用s表示。

s=ah 

三角形的底用a表示,高用h表示,面积用s表示。 

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。 

s=(a+b)h/2

s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。 

c=d=2r

s= r²

扇形的半径用r表示,n表示圆心角的度数,面积用s表示。 

s= nr²/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。 

v=sh

s=2(ab+ah+bh)

v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示.

s=6a²

v=a³

圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示.

s=ch

s=s+2s 

v=sh

圆锥的高用h表示,底面积用s表示, 体积用v表示.

v=sh/3

3 用字母表示数的写法 

数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。 

当“1”与任何字母相乘时,“1”省略不写。 

在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。 

用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。 

4将数值代入式子求值 

* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。字母表示的是数,后面不写单位名称。 

* 同一个式子,式子中所含字母取不同的数值,那么所求出的式子的值也不相同。 

二、简易方程 

(一)方程和方程的解 

1方程:含有未知数的等式叫做方程。 

 注意方程是等式,又含有未知数,两者缺一不可。 

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立  

2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 

三、解方程 

解方程,求方程的解的过程叫做解方程。 

四、列方程解应用题 

1 列方程解应用题的意义 

* 用方程式去解答应用题求得应用题的未知量的方法。 

2 列方程解答应用题的步骤 

* 弄清题意,确定未知数并用x表示; 

* 找出题中的数量之间的相等关系; 

* 列方程,解方程; 

* 检查或验算,写出答案。 

3列方程解应用题的方法 

* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。 

* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。 

4列方程解应用题的范围 

小学范围内常用方程解的应用题: 

a一般应用题; 

b和倍、差倍问题; 

c几何形体的周长、面积、体积计算;

d 分数、百分数应用题; 

e 比和比例应用题。 

  比和比例 

1比的意义和性质 

1 比的意义 

两个数相除又叫做两个数的比。 

“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。 

比值通常用分数表示,也可以用小数表示,有时也可能是整数。 

比的后项不能是零。 

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 

2)比的性质 

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。 

3  求比值和化简比 

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。 

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。 

4)比例尺 

图上距离:实际距离=比例尺 

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。 

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 

5)按比例分配 

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。 

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 

2 比例的意义和性质 

1 比例的意义 

表示两个比相等的式子叫做比例。 

组成比例的四个数,叫做比例的项。 

两端的两项叫做外项,中间的两项叫做内项。 

2)比例的性质 

在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。 

3)解比例 

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 

3 正比例和反比例 

1 成正比例的量 

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。 

用字母表示y/x=k(一定) 

2)成反比例的量 

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 

用字母表示x×y=k(一定)

新一篇:小升初总复习之基本概念-4:几何的初步知识
旧一篇:小升初总复习之基本概念---2:度量衡
姓名:     (必填)
联系方式:     (不会被公开,选填)
评论内容:  
 

旗下站点:思而学奥数网思而学中考网 Copyright © 2009 安阳思而学教育—思而学教育网 Inc.All rights reserved    豫ICP备17046211号